Why don't we follow the **calcination** and **reduction** stages of **Pd nanocatalysts** supported on alumina in situ directly in an **Environmental Transmission Electron Microscope**?

<u>Thierry Epicier</u>¹, Siddardha Koneti¹, Lucian Roiban¹, Anne-Sophie Gay², Amandine Cabiac², Priscilla Avenier²

¹Université de Lyon, MATEIS, INSA de Lyon, UCB Lyon 1, UMR 5510 CNRS, 69621 Villeurbanne Cedex, France ²IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France

• Environmental Transmission Electron Microscopy: a rapid introduction

In situ TEM under gas and in temperature: towards Operando nanocharacterization

• Preparation of Pd nanocatalysts supported on δ -Al₂O₃

Calcination and reduction stages in situ directly in ETEM

• Conclusion and Perspectives: Environmental Tomography

Follow the evolution of Nanoparticles in real time in 3D in the context of catalysis

Beyond High Vacuum: Environmental TEM...

• Environmental EM: a technical issue

UCL

Université catholique de Louvain **KU LEUVEN**

LYM

Mateis

PREPA 12

uty # = 12, 2010

 (a) a pair of electron transparent 'windows' can be placed above and below the specimen to seal it, and its gas atmosphere, from the column;

(b) alternatively a pair of small apertures can be placed above and below the specimen. Gas leakage into the column is then limited to that which escapes via the apertures.

L. MARTON_*Bull. Acad. Roy. Belg. Cl. Sci.* **21** (1935) 553-564

Beyond High Vacuum: Environmental TEM... KU LEUVEN

UCL

Université catholique de Louvain

PREPA 12

uty # - 12, 2010

http://www.clym.fr/Ly-EtTEM_examples/ Ly-EtTEM_examples.html

Mateis

UYM.

Controlled pressure range: $\approx 10^{-8}$ mbar – ≈ 20 mbar

Equipped with:

- EDX SDD analyzer
- **G**atan Imaging Filter ۲
- Tomographic holder
- **Pico-indenter**
- Fast 16 Mp CMOS camera Oneview[™]

25 fps in 4K 100 fps in 2K

Prouvelles

MEMS-based (SiN_x chip) heating holder

thierry.epicier@insa-lyon.fr

M. RAMOS-FERNANDEZ ET AL., Oil & Gas Science and Technology - Rev. IFP, 62 1 (2007) 101-113

• Objective 1

Mateis

Size of NPs: comparison in situ ETEM vs. Conventional 'ex situ' measurements Identify growth process (Ostwald Ripening / coalescence)

STEM-(HA)ADF images, ImageJ[™] and home-made softwares

• Objective 2

(LYM

Mateis

N R = 12, 2010

Confirm the nature and crystallography of NPs at each stage of the preparation

G. KETTELER et al., J. Am. Chem. Soc., 127 51 (2015) 18269

Prouvelles

• Objective 3

LYM

Nateis

UCI

Université catholique

Attemps for in situ 3D characterization

Fast acquisition of 'tilt series' to freeze a microstructure evolving under gas and T°

M. BARCENA, A.J. KOSTER, Seminars in Cell & Developmental Biology, **20** (2009) 920-930

"It is tempting to contemplate whether soon we might be able to image in 3D relevant processes in catalysis, such as the sintering of supported metal nanoparticles under near to realistic reaction conditions, or the evolution of catalysts during synthesis."

J. ZECEVIC et al., *Current Opinion in Solid* State and Materials Science **17** (2013) 115

Size of NPs: in situ ETEM vs. 'ex situ' TEM

Dried in air, 2 hrs 150°C Calcined in air, 2 hrs 450°C

Impregnated state

2 hrs 150°C

Mateis

thierry.epicier@insa-lyon.fr

ETEM / Pd $-\delta$ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

Size of NPs: in situ ETEM vs. 'ex situ' TEM

Impregnated state

Dried (120-150°C) **Calcined** (425-450°C) Impregnated

High Vacuum STEM, post mortem experiments

11

• Dangers of high mag TEM: irradiation effects

M. RAMOS-FERNANDEZ et al., *Oil & Gas Science and Technology*, **62** 1 (2007) 101

Impregnated state, 20°C, High Vacuum

UCL

Université catholique de Louvain

N R = 12, 201

ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

• 'Low Temperature', 250°C under O₂: same area followed over 2 ½ h., BEAM OFF

LITTLE MOBILITY of NPs: occasional COALESCENCE when NPs are VERY CLOSE one to each other

UCI

Université catholique de Louvair **KU LEUVEN**

DISAPPEARANCE of SMALL NPs at the expenses of LARGER IMMOBILE ones: Ostwald Ripening growth

UCL

Université catholique de Louvair

NY 8 - 12, 2010

KU LEUVEN

IRRADIATION-induced MOBILITY of NPs during prolonged exposure to the electron probe (even in STEM)

KU LEUVEN

UCL

Université catholique de Louvain

Pd NPs at t=0'

Pd NPs at t=150'

R_g

Mateis

NO MOBILITY (slight increase of size): no significant coalescence

ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

Pd NPs at t=150'

• Confirmation of coalescence only when NPs are very close one to each other

(other area) experiment over 150', micrographs every 30' Pd NPs at t=0'

KULEUVEN Nature and Crystallography of Pd-based NPs

• Initial (Impregnated) state

collodial PdO expected

UCL

Université catholique de Louvain

PREPA 12

uty # --12, 2010

B. DIDILLON et al., pp. 41-54 in 'Studies in Surface Science & Catalysis' **118** (1998)

ETEM / Pd – δ -Al₂O₂ - 2018/07/10 (PREPA12. Louvain-La-Neuve)

• Initial (Impregnated) state

UCL

Université catholique de Louvain

Mateis

N R = 12, 201

colloidal PdO expected BUT presence of fcc Pd NPs (post mortem, High Vacuum)

Nature and Crystallography of Pd-based NPs

• Calcined state (after 2 h. under AIR or O₂ at 450°C)

Mainly PdO_x

UCL

Université catholique de Louvain

(9月-12,2010

KU LEUVEN

Mateis

In situ calcination in ETEM, 2h 450°C, O₂ 10 mbar 20°C after calcination in ETEM, 2h 450°C, O₂ 10 mbar

thierry.epicier@insa-lyon.fr

CITS

Rg

ETEM / Pd $-\delta$ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

Nature and Crystallography of Pd-based NPs

• Reduction directly followed in the ETEM state (beam OFF between micrographs)

2 mbar H_2 at 150°C, time t_0

Large Pd NPs, α -Al₂O₃

Mateis

UCL

Université catholique

after 45' at 150°C

ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

LŶM

Mateis

• Context: follow the evolution of nanomaterials in situ and *in 3D* under dynamic environmental conditions

- Principle of 'tilt electron tomography' in a TEM

M. BARCENA, A.J. KOSTER, Seminars in Cell & Developmental Biology, **20** (2009) 920

Classical step-by-step 'tilted'tomography in STEM

Rotation angular amplitude	140°	
Angular step increment	2°	Re-centering.
Pause at each tilt	30 sec	re-focusing
Exposure time of each image	40 sec	
Time to proceed to the next tilt	0.5 sec	10 µs dwell time,
Total acquisition time	≈ 83 min	2K x 2K scan

Context: follow the evolution of nanomaterials in situ and *in 3D* under dynamic environmental conditions

UYM

Mateis

on.fr ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

• Towards real time tomography under environmental conditions

1) Speed up tilt tomography in Bright Field TEM

Classical step-by-step 'tilted'tomography in STEM

Rotation angular amplitude	1
Angular step increment	
Pause at each tilt	30
Exposure time of each image	40
Time to proceed to next tilt	0.5
Total acquisition time	≈8

UNIVERSITÉ

<u>L</u>ÝM

Mateis

Optimized step-by-step 'tilted'tomography in BF-TEM

'tilted' tomography by continuous rotation in BF-TEM

189, (2018), 109

ude	140°	Rotation angular amplitude	140°	Rotation angular amplitude	140°
	2°	Angular step increment	2°	Total acquisition time	5 sec
	30 sec -	Pause at each tilt	0.5 sec	Angular rotation speed	28°/sec
mage	40 sec -	Exposure time of each image	0.1 sec	Number of frames per second	100
tilt	0.5 sec	Time to proceed to next tilt	0.3 sec	'Angular rotation 'blur' per frame	<i>0.28</i> °
	≈ 83 min	Total acquisition time	≈ 1 min	H. BANJAK et al., <i>Ultrai</i>	microscopy.

L. ROIBAN et al., *Microsc. Microanal.* 22 5 (2016) 8

L. ROIBAN et al., J. of Microscopy, 269, 2 (2018), 117

Towards real time tomography under environmental conditions

2) Fast tomography under gas and in temperature at the level of *a few seconds*

OneView camera 100 fps in 2Kx2K GGATAN LARGE TILT AMPLITUDE of **MEMS-based** а heating holder ±72° rotation Total time 5.4" 20 µm Contacts electric contacts (power / measurement)

(LYM

Mateis

Nanochip with ultrathin SiN, windows

Example: soot @ ZrO₂, 350°C, O₂ 5 10⁻⁵ mbar

'tilted' tomography by continuous rotation in BF-TEM

Rotation angular amplitude	140°
Total acquisition time	5 sec
Angular rotation speed	28°/sec
Number of frames per second	100
'Angular rotation 'blur' per frame	<i>0.28</i> °

H. BANJAK et al., Ultramicroscopy, **189**, (2018), 109

thierry.epicier@insa-lyon.fr

ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

Towards real time tomography under environmental conditions

2) Fast tomography under gas and in temperature at the level of *a few seconds*

OneView camera 100 fps in 2Kx2K GGATAN

LARGE TILT AMPLITUDE of **MEMS**-based а heating holder ±72° rotation

LYM

Mateis

-0.06 ° Total time 5.4" 20 µm 00:02.800 Nanochip with ultra-Contacts electric contacts (power / measurement) thin SiN, windows

Example: soot @ ZrO₂, 350°C, O₂ 5 10⁻⁵ mbar 100 nm 73.000 degrees

Total time 5.1"

'tilted' tomography by continuous rotation in BF-TEM

Rotation angular amplitude	140°
Total acquisition time	5 sec
Angular rotation speed	28°/sec
Number of frames per second	100
'Angular rotation 'blur' per frame	<i>0.28</i> °

H. BANJAK et al., Ultramicroscopy, **189**, (2018), 109

• Semi-fast tomography of Pd @ δ -Al₂O₃ during in situ ETEM calcination

20°C, High Vacuum

350°C, after 60', 2.6 mbar O₂

Rapid cooling to 20°C, High Vacuum after 60' at 350°C, 2.6 mbar O₂

LITTLE Visibility of Pd NPs (low mag)

Mateis

• Semi-fast tomography of Pd @ δ -Al₂O₃ during in situ ETEM calcination

350°C, after 60', 2.6 mbar O₂

20°C, High Vacuum

KU LEUVEN

UCI

Universite catholique de Louva

Mateis

Total Semi-Fast BF acquisition: 73.4° / -66.6°, step 2°, 2 min 42 sec Reconstruction 15 ART iterations (63 images between 70.9 and -63.1°)

• Semi-fast tomography of Pd @ δ -Al₂O₃ during in situ ETEM calcination

• Semi-fast tomography of Pd @ δ -Al₂O₃ during in situ ETEM calcination

20°C, High Vacuum

350°C, after 60', 2.6 mbar O₂

Rapid cooling to 20°C, High Vacuum after 60' at 350°C, 2.6 mbar O₂

<u>L</u>ÝM

Mateis

'New' NPs after heating at 350°C

Lost (not seen) NPs when back to 20°C

thierry.epicier@insa-lyon.fr

ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

LYM

Mateis

Attemps for in situ 3D characterization

(x,z) projections

Significant changes while heating at 350°C (slight growth / coalescence) but new NPs

Minor changes when cooling down to RT° (few 'new' NPs - better resolution in STEM -)

thierry.epicier@insa-lyon.fr ETEM / Pd $-\delta$ -A

ETEM / Pd – δ -Al₂O₃ - 2018/07/10 (PREPA12, Louvain-La-Neuve)

- Preparation (drying, calcination, reduction) of impregnated Pd @δ-Al₂O₃ nanocatalysts: efficient characterization in Environmental TEM (ETEM)
 - NP size below 4 nm $(3.41 \pm 0.5 \text{ nm})$ after the whole preparation process
 - Small growth essentially due to Ostwald Ripening before 450°C
- Probable instability of the PdO phase under High Vacuum in the TEM (reasonable behavior under a few mbar of oxygen / air)
- (semi) fast Electron Tomography is possible under environmental (gaz, temperature) conditions (acquisition time down to a few seconds)
 - At the minute level: snapshots at different stages of a reaction (kinetic studies?)
 - At a few seconds level: identification of fast evolving processes (sintering, facetting?)
 - Possible interest for electron beam sensitive materials (polymer / biological materials)

 $Pd - \delta$, tomogram (150" acquisition)

A few nm resolution (so far)

ACKNOWLEDGEMENTS

LÝM

- Matthieu BUGNET, Philippe STEYER, MATEIS INSA-Lyon Mateis
- Mimoun AOUINE, Francisco J. CADETE SANTOS AIRES, IRCELYON, University Lyon I
- ANR project '3DCLEAN' n°15-CE09-0009-01, LabeX 'IMUST' Université de Lyon (ANR) **IFPen**
- CPER 2007-2013 RhôneAlpes 🛒 GRANDLYON KEPUBLICEE FRANCAS

UYM

Mateis

Microscopie Électronique en Transmission et Sonde Atomique I.R. FR 3507 CINITS CEED

UNIVERSITÉ

