Tuning the reduction state and atomic resolution study of cerium oxide (CeO₂) nanocubes in a Cs-corrected **Environmental TEM**

Thierry EPICIER^{1,2}, Amanda K.P. MANN³, Zili WU³, Steven H. OVERBURY³

Mateis University of Lyon, INSA-Lyon, F

University of Lyon, UCBL, F

Oak Ridge, Tennessee, USA

Ce

LITERATURE BACKGROUND on CERIA CeO₂

Ceria CeO₂: a multi-functional oxide widely used in catalysis

(Redox Ce⁴⁺ / Ce³⁺ vs. oxygen vacancies)

A. TROVARELLI, '*Catalysis by Ceria and Related Materials*', Imperial College Press, London (2002)

 A challenging material for atomic (surface) imaging (of oxygen species) by aberration-corrected HR(S)TEM

G. MÖBUS et al., *Adv. Funct. Mater.* 21 (2011),1971-1976
S. TURNER et al., *Nanoscale* 3 (2011), 3385-3390
Y. LIN et al., *Nano Lett.* 14 (2014),191-196

$$\begin{array}{ccc} CeO_2 & \longrightarrow & CeO_{2-n} + & nO \\ \hline Ce^{4+} & & Ce^{4+}, Ce^{3+}, \Box_O \end{array}$$

EELS

cubic Fm3m **a = 0.541 nm**

> L.A.J. GARVIE, P.R. BUSECK, *J. Phys. Chem. Sol.* **60** (1999) 1943

C_s -corrected FEI-TITAN Environmental TEM 300 kV (P_{gas} ≤ 23 mbar, T_{max} ≈ 1000°C)

[100] $t = 3 \pm 1 \text{ nm}$ [110]

 $\delta f = -9 \pm 1 nm$

3/12

HRTEM study of Ceria nanocubes with {100} facets

4/12

UNIVERSITE DE LYON CONS INSA

Z. WU et al., J. of Phys. Chem. C, (2015)

4bis/12

'High Vacuum' 2.2 10⁻⁵ mbar

Speed x0.3 (0.075s/f)

Bulk effects: control of the reduction state in ETEM

• Gas introduction in the ETEM: oxygen O_2 cycling [3.9 10⁻⁶ HV' - 2 10⁻⁵ mbar]

Speed x30 (back and forth)

O-K edge (EELS)

Nominal ceria CeO₂: Fm-3m, a = 0.5411 nm R.W.G. WYCKOFF, 'Crystal Structures', 2nd ed., Interscience Pub.: New York, 1 (1963) 239-444

Eger

Hungary

Oxygen vacancies Ce₄O₇: Fm-3m, **a = 0.5526 nm** G. BRAUER, H. GRADINGER, *Z. Anorg. Allg. Chem.*, **277** (1954) 89

CeO₂: Environmental TEM (2015/08/26)

CeO_2 (CeO₂)

E.A. KUEMMERLE, G. HEGER, J. Solid State Chem., **147** (1999), 485

Ce₁₁O₂₀ (CeO_{1.82})

P-1: a = 6.757, b = 10.26, c = 6.732 Å, α = 90.04, β = 99.8, γ = 96.22°

 Ce_4O_7 (CeO_{1.75})

 $a_{Ce_4O_7} = 5.53 \text{ Å} \approx a_{CeO_2}$

NSA

CeO₂: Environmental TEM (2015/08/26) thierry.epicier@insa-lyon.fr

Surface effects: 'gas-control' of the atomic mobility in ETEM

{100} surfaces: chemical nature and stability under different atmospheres

Detection of chemisorbed CO₂ as 'flat-lying' tridentate carbonates

10/12

• Absorption of CO₂ as carbonates on CeO₂ P. ALBRECHT et al., J. Phys. Chem. C, 118 (2014) 9042

Indicative HREM simulations of edge-on {001} surface covered by CO₂ units

Eger

lungary

Desorption of carbonates at high temperature

11/12

Acknowledgements

UNIVERSITE DE LYON

SA