

Précipitation métastable dans les alliages Al 6XXX : apports de l'imagerie en *STEM HAADF* à l'échelle atomique

¹Université de Lyon, INSA-Lyon, MATEIS, *umr CNRS 5510,* F-69621 Villeurbanne Cedex ²CEA-Grenoble, *Institut Nanosciences et Cryogénie / SP2M,* LEMMA, F-38054 Grenoble

Mateis

LYM

œ

OUTLINE

STEM-HAADF imaging in a Transmission Electron Microscope Transmission Electron Microscopy (High Resolution TEM) / vs. Scanning TEM (STEM-HAADF: High Angle Annular Dark Field) C_s correction in TEM

STEM-HAADF study of precipitates in an AI 6061 alloy

Context: precipitation in AI 6XXX alloys Results 6061 alloy AI-Mg,Si,Cu: treatments @ 200°C and 300°C (transformation QC \rightarrow Q')

Summary

High Resolution Electron Microscopy

ABERRATIONs + partial coherence → blurring of lattice fringes LOSS of RESOLUTION

INTERFERENCES + dynamical scattering → phase shifts POSITIONING of ATOMIC COLUMNS?

High Resolution Electron Microscopy

AI [001], f.c.c. Fm3m: **a = 0.405 nm**

High Resolution TEM

Q (or λ) **Al**₄**Mg**₈**Si**₇**Cu**₂ [0001], hexagonal P6: **a = 1.039 nm, c = 0.402 nm**

High Angle Annular Dark Field

Scanning Transmission Electron Microscopy High Angle Annular Dark Field

Conventional TEM HAADF imaging Annular detector -> collection of **INCOHERENT** electrons scattered at high angle $\theta_{\min} - \theta_{\max}$ NO DYNAMICAL SCATTERING $I_{HAADF}(q) \propto Z^2$ or $I_{HAADE} \propto Z^{\alpha}$ with $\alpha \approx 1.6 - 2$ (collection angles θ_{min} - θ_{max}) **STEM** image

[D.E. JESSON, S. PENNYCOOK, *Proc. Roy. Soc. London*, **A449**, (1995), 273-293]

Illustration: Conventional TEM vs. STEM-HAADF

JEOL 2010F 200 kV

Al₃(Zr,Sc) L1₂ precipitates in Al

[T. EPICIER, Adv. Eng. Mater. 8, (2006), 12,
E. CLOUET (T. EPICIER, W. LEFEBVRE) et al., Nature Materials 5, (2006), 482-488]

STEM-HAADF at the ATOMIC LEVEL

 β^{\bullet} hexagonal P62m a = 0.71 nm, c = 0.405 nm

[C. CAYRON, P.A. BUFFAT, *Acta Mater.,* **48**, (2000), 2639] [**0001**] // [**001**]_{Al} 0.3 nm 0.125 nm

TITAN FEI[©] 300 kV *corrected probe*

Experimental

0.2 nm

0.05 nm

STEM-HAADF at the ATOMIC LEVEL

Q (or λ) Al₄Mg₈Si₇Cu₂ hexagonal P6: a = 1.039 nm, c = 0.402 nm

Al₃(Zr,Sc) L1₂ precipitates in Al [T. EPICIER, K. SATO, T. KONNO, unpublished, (2009)]

300 kV, FEI Titan (STEM-HAADF, corrected probe, *FWHM* **≈ 1 Å),** *CEA-Grenoble, Minatec*

The precipitation sequence in AI 6XXX alloys

The precipitation sequence in AI 6XXX alloys

6061 alloy AI-Mg,Si,Cu: treatments @ 200°C

STEM-BF

ordered (?) β" no (few) Cu?

cluster (pre-β"?) no Cu

6061 alloy AI-Mg,Si,Cu: 5' @ 300°C

mixed particle contains Cu

quasi-complete atomic Cu 'shell'

Metastable phase (AI),Mg,Si,*Cu* QC a = 0.705 nm

Metastable phase Al,Mg,Si,Cu,

a = 1.04 nm

EDX Chemical analysis [MASSARDIER V., EPICIER T., Mat. Sci. Forum, 396-402, (2002), 851-856]

Mg Al Si Cu 26.3 58.5 13.6 1.6 Cu-rich 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3

 Mg
 Al
 Si
 Cu

 19.8
 66.8
 11.3
 2.1

 QC
 Cu-enriched

Mg

QC [CAYRON C., BUFFAT P., Acta Mater (2000)]

EDX	Mg	ΑΙ	Si	Cu
	35.8	43.9	19.5	0.7

small amount of ordered Cu...

Mg	ΑΙ	Si	Cu
30.5	47.2	21.5	0.7

QSTEM simulations

[KOCH CT., PhD thesis, ASU-USA, (2002)]

= 0.70 nm

ann

t ≈ 10 *nm*

QC

[C. CAYRON C., P. BUFFAT, Acta Mater (2000)]

$\beta' Mg_9Si_5$ (disordered)

hexagonal P63/m, a = 0.705 nm, c = 0.405 nm

[R. VISSERS et al., Acta Materialia, 55 (2007), 3815–3823]

6061 alloy Al-Mg,Si,Cu: 1 hr @ 300°C

fully ordered $\beta'_{\parallel} \mathbf{Q}'$ particles with Cu

The structure of the Q' phase

hexagonal P6, a = 1.039 nm, c = 0.402 nm [L. ARNBERG and B. AURIVILLIUS, *Acta Chem. Scand.*, A34,(1980), 1-5]

Transformation QC \rightarrow Q' (5' @ 300°C)

Lattice continuity between QC vs. Q' phases:

- identified by [C. CAYRON C., P.A. BUFFAT, Acta Mater., 48, (2000), 2639]

- confirmed by [C.D. MARIOARA et al., Philos. Mag., 87, 23, (2007),3385]

SUMMARY

- HAADF C_s-corrected images have been obtained from QC and Q' (mixed-)precipitates in a 6061 alloy aged 5' and 1 hr. at 300°C
- a resolution of \approx 0.12 nm is required to solve the structure of these phases:
 - the **QC phase** adopts the hexagonal structure proposed by CARYON & BUFFAT [*Acta Mater.*, **48**, (2000)]
 - the **Q' phase** appears to be isostructural *(identical?)* to the stable Q phase in the quaternary system AlCuMgSi identified by ARNBERG & AURIVILLIUS [*Acta Chem. Scand.,* (1980)]
- Cu-segregation occurs around the QC precipitates before transformation into Q' phase
- The transformation QC → Q' via Cu-diffusion into the QC hexagonal lattice, leaving a common Si ≈ hexagonal sub-lattice between both phases.

ACKNOWLEDGEMENTS

- plateforms CLYM at Lyon and PFNC-Minatec at Grenoble (Pascale BAYLE-GUILLEMAUD) for access to TEMs
- CNRS, and METSA french network for supporting these experiments

Mateis

Metsa