

8th International Conference on Environmental Catalysis Asheville, NC August 24-27

Investigations of soot combustion on Yttria-Stabilized Zirconia by Environmental Transmission Electron Microscopy (ETEM)

<u>T. EPICIER^{1,2}, M. AOUINE¹, F. J. CADETE SANTOS AIRES¹, E. OBEID¹, M. TSAMPAS¹, A. SERVE¹, K. PAJOT³, P. VERNOUX¹</u>

Ecole Nationale Supérieure des Mines

 ¹Université de Lyon, IRCELYON, UMR 5256 CNRS, Université C. Bernard Lyon I, 2 avenue A. Einstein, 69626 Villeurbanne, France
²Université de Lyon, MATEIS, UMR 5510 CNRS, INSA de Lyon, 69621 Villeurbanne Cedex, France
³PSA PEUGEOT CITROËN, Centre technique de Vélizy, Route de Gisy 78943 Vélizy-Villacoublay, France

Juge Lyon 1 CIIS

Important market share of Diesel cars in Europe

Comité des Constructeurs Français d'Automobiles in *Tableau de bord automobile*, *Vol.* http://www.ccfa.fr/Tableau-de-bord-automobile, **2004**, **2005**, **2008**, **2010**, **2011**

• Diesel cars reduce the fuel consumption

– Participate to the CO_2 emission reduction:

But Diesel engines emit Particulate Matter

 – from 2014 (Euro 6): PM emission limitation expressed in number of particulates besides mass!

6 10¹¹ part/km and 4,5 mg/km in 2014

 PM abatement is OK but a continuous improvement of the global system is still required

Diesel Particulates Filters (DPF)

- From 2000 in France
- From October 2010: mandatory in all new Diesel cars (EURO 5)
- DPF, ceramic structures (cordierite, SiC) with:
 - alternately plugged channels at the inlet and outlet
 - porous filtering walls
- High filtering efficiency

UNIVERSITE DE LYON

- Need a regeneration: fuel post-inject ion (exhaust gas temperature increase)
- Regeneration = fuel over-consumption

The aim: produce a self regenerating DPF

Yttria-Stabilized Zirconia (YSZ)

- High chemical and thermal stability (used as electrolyte in SOFCs)
- Fluorite structure
- No redox properties
- Bulk ionic oxygen conductivity
- YSZ Tosoh (13 m²/g) : (ZrO₂)_{0.92}(Y₂O₃)_{0.08}

YSZ can oxidize soot T50 = 680 °C soot without catalyst T50 = 500 °C on commercial catalyst (Pt / CeZrO₂) T50 = 520 °C on YSZ

Patent WO 2011098718 (A1), G. BLANCHARD, S. ROUSSEAU, L. MAZRI, L. LIZARRAGA, A. GIROIR-FENDLER, B. D'ANNA, P. VERNOUX

Soot oxidation starts from 270°C

Below 400°C, $C^{16}O_2$ is the only one product.

60% of O atoms in the overall CO_2 production are coming from the YSZ bulk

E. OBEID et al., Journal of Catalysis, 309 (2014) 87-96

CINIS

YSZ lattice oxygen species are clearly involved in the ignition of the soot oxidation process

Fuel-cell type electrochemical oxidation process

Soot: reactant and current collector

- **1. Electrochemical oxidation of soot:** $C + 2O^{2-}_{YSZ} \rightarrow CO_2 + 4e$ - (though the soot)
- **2.** Electrochemical reduction of oxygen:

 $2 O_{ads} + 4 e$ - (through the soot) $\rightarrow 2 O^{2-}_{YSZ}$

ElectroMotive Force induced between the anode (soot / YSZ interface) and the cathode (TPB: O₂ / YSZ / soot)

Two key parameters:

- The oxygen partial pressure in the gas phase (EMF)
- The contact surface between soot and YSZ

ETEM experiments to confirm the importance of the soot / YSZ contact points

7

SOOT production

- Soot produced with a CAST burner (propane/air flame, O₂/propane = 5.16)
- Specific surface area: 140 m² g⁻¹
- Mixture between collected soot and YSZ powder:
 - YSZ/soot = 4/1 (weight ratio)
 - Crushed in a mortar for 15 min

SOOT production

 Tight contact between soot particulates and YSZ grains

The Environmental TEM (ETEM) setup

ETEM: FEI TITAN 60-300 kV with an objective C_s aberration corrector

P_{gaz} ≤ 23 mbar, T ≈ 1000°C, HRTEM info limit = 0.085 nm, STEM resolution STEM = 0.13 nm

www.clym.fr

The Environmental TEM (ETEM) setup

ETEM: FEI TITAN 60-300 kV with an objective C_s aberration corrector

P_{gaz} ≤ 23 mbar, T ≈ 1000°C, HRTEM info limit = 0.085 nm, STEM resolution STEM = 0.13 nm

- Mixed soot/YSZ powders mounted on Titania grids with or without supporting film (C, SiO_x)
- Inconel heating TEM sample holder gatan

- Pure Oxygen gas introduced up to 3 mbar and up to 550°C
- Observations performed at 300 kV and 80 kV (irradiation effects) with and without 'BEAM ON'

$T^{\circ} = 425 \pm 25^{\circ}C$, 2 mbar O_2

300 kV, SiO_{x} supporting film

speed x4

$T^{\circ} = 475 \pm 25^{\circ}C$, 1.7 10⁻¹ mbar O_2

• Similar observations at 300 kV whatever the type or nature of support

NO intrinsic modification due to the electron beam (irradiation)

$T^{\circ} = 475 \pm 25^{\circ}C$, 1.7 10⁻¹ mbar O_2

80 kV, no supporting film

2<u>0 n</u>m

300 kV, no supporting film

$T^{\circ} = 525 \pm 25^{\circ}C$, 3 mbar O_2

80 kV, SiO_x supporting film

speed x4

$T^{\circ} = 525 \pm 25^{\circ}C$, 3 mbar O_2

300 kV, SiO_x supporting film

speed x4

Soot particulates do not burn if not in (close) contact with PSZ

$T^{\circ} = 525 \pm 25^{\circ}C$, 2 mbar O_2

300 kV, SiO_x supporting film

speed x4

$T^{\circ} = 525 \pm 25^{\circ}C$, 2 mbar O_2

$T^{\circ} = 475 \pm 25^{\circ}C$, 2 mbar O_2

300 kV, no supporting film

20 nm

CINIS

Back to room temperature and High Vacuum

Back to room temperature and High Vacuum

CONCLUSIONS

- YSZ, a purely O²⁻ conductor, can oxidize soot without any noble metal.
- In-situ ETEM experiments in presence of O₂ confirm that:
 - bulk YSZ oxygens are the active species for soot oxidation at the soot/YSZ interface (no oxidation takes place without contact)
 - The number of soot/YSZ contact points is the key parameter
 - Non linear soot oxidation rate : local thermal effect?
 - CAST soot contains Ni as impurity (nanoparticles)

UNIVERSITE DE LYON

ACKNOWLEDGMENTS

• French National Research Agency ANR for funding "PIREP2" (Contract No. ANR-2010-VPTT-006-01)

CENTRALELYON

• LYM Centre Lyonnais de Microscopie (Lyon, F)

Lyon 1 CITS

