Tomographie Électronique

Thierry EPICIER

thierry.epicier@insa-lyon.fr

Université de Lyon, MATEIS, umr CNRS 5510, INSA-Lyon / UCBL, Bât. B. Pascal, F-69621 Villeurbanne Cedex, et IRCELYON, umr CNRS 5256, Université Lyon I, F-69626 Villeurbanne Cedex

Ecole Internationale de Microscopie Électronique 1^{ère} édition 29 SEPTEMBRE - 4 OCTOBRE 2014 Cité de l'Innovation de Fès, MAROC

Plan du cours

1. La Tomographie Électronique : pourquoi, comment ?	p.3	
1.1. Nécessité d'analyses tridimensionnelles	p.4	
1.2. Différents types de "tomographie"	p.6	
1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux	p.22	
2. Tomographie 'tiltée' dans un Microscopie en Transm	issio	n
2.1. Principes généraux	p.38	
2.2. Reconstruction tomographique : principes algorithmiques	p.39	
2.3. Reconstruction tomographique : illustrations	p.46	
2.4. Synthèse : quelques chiffres	p.49	
2.5. Réglages et ajustements expérimentaux	p.50	
2.6. Visualisation et analyse des tomogrammes	p.56	
3. Applications	p.57	
3.1. Illustrations d'approches tomographiques (en Sciences des Ma	tériau	x)
3.2. Développements actuels	p.65	
3.3. Tomographie en mode basse tension (MEB)	p.69	
3.4. Sonde Atomique Tomographique	p.81	
3.5. Tomographie en mode environnemental	p.85	2

Tomographie médicale

IRM, Tomodensiométrie (scanner), émission de positons, échographie <u>http://www.doctissimo.fr/html/</u>

www.inserm.fr

Tomographie sismique

système d'alimentation magmatique du volcan Kilauea à Hawaii http://voyage.hawaii.free.fr/volcans/volcans.htm

Tomographie minière et gisements

http://www.vsg3d.com

1.1. Nécessité d'analyses tridimensionnelles

a) des "microstructures"

Image MEB numérisée Fraction volumique de renforts ? Forme et distribution des renforts ?

Reconstruction 3D à partir d'une séquence d'images *FIB*

Nanocomposite polymère : matrice de polyurethane (PU) renforcé par 5 % poids de nanofilaments Fe₃C@C

[V. SALLES et al., Sensors and Actuators A, 211 (2014), 105-114]

1.1. Nécessité d'analyses tridimensionnelles

b) des "morphologies"

NanoParticules de Palladium : bâtonnets à prisme pentagonal, cuboïdes, bi-pyramides

[S. BENLEKBIR et al., Phil. Mag. Letters 89 2 (2009), 145-153]

1.2. Différents types de "tomographie"

a) Préliminaire : a-t-on toujours besoin de "tomographie" pour obtenir l'information tridimensionnelle recherchée ?

Hand Shadows To Be Thrown Upon The Wall, Henry BURSILL (pub. GRIFFITH and FARRAN, 1859)

a) Préliminaire : a-t-on toujours besoin de "tomographie" pour obtenir l'information tridimensionnelle recherchée ?

Reconstruction stéréoscopique en 3D de surfaces

Images MEB (SE) d'un faciès de rupture d'un minéral (serpentine) [thèse H. YUAN, INSA, en cours]

Quelques idées naïves…

1) La projection stéréographique

 2) une grande inclinaison...
 silice mésoporeuse SBA 15 - HPA (W, P, O: H₃PW₁₂O₄₀)

mésopores (2-10 nm) debout (STEM-HAADF)

vue à plat

Stéréoscopie généralisée

Nano-composites hybrides Au@SiO₂

[S. BENLEKBIR, thèse, *INSA-Lyon,* (2009)] [M. MARTINI, thèse, *Université-Lyon I,* (2010)]

Essai de tomographie (pas 2°) 'tilt' 15° après 20'

9

 $\{X_0, Y_0, Z_0\}_i$

- Stéréoscopie généralisée
- Nano-composites hybrides Au@SiO₂

Images 73.5° / 66° / 58.5° / 51° / 43.5° / 36° / 28.5° / 21° / 13.5°

NPs d'or mal positionnées

1.2. Différents types de "tomographie"

b) Une large gamme de techniques pour une large gamme d'échelles

11

Sonde Atomique Tomographique / Microscopie Ionique à Effet de Champ

TEM

1.2. Différents types de "tomographie"

c) Principes de "tomographie"

• Approche de type "Slice-and-view"

Découpe physique (ultra-microtome, *FIB*, polissage, sonde atomique) ou

Découpe virtuelle (microscopie 'confocale')

STEM 'confocal'

Ultramicroscopy **106** (2006)

1062-1068]

La profondeur de champ ΔZ diminue si l'angle de convergence α augmente

Transistor : Si/SiO₂/HfO₂ interface (Diffusion Hf dans la couche amorphe)

[H.L. XIN, D.A. MULLER, *J. Electron Microscopy*, **58** 3 (2009), 157-165] [P. VAN DEN BROEK et al., *Ultramicrosc.*, **110** (2010) 548-554] 13

Découpe contrôlée par ultra-microtomie

Dispositif 3D View[©] GATAN (3D Serial Blockface imaging dans un MEB)

Épaisseur élémentaire des découpes 15 - 200 nm

Basse tension pour faible profondeur de pénétration en Z

'low vacuum' ou MEB Environnemental pour éviter les phénomènes de charge (matière biologique)

NCMIR

Muscle de souris

- Volume 189 x 189 x 303 µm³
- Épaisseur de coupes 50 nm
- Images 4K x 4K
- 6000 images
- Temps d'acquisition : 9 jours

Tomographie en FIB-SEM

[DUNN D. N., HULL R. Applied Physics Letters, 75 (1999) 3414-3416]

[INKSON B.J. et al., Scripta Materialia, 45 (2001) 753-758]

[L. HOLZER et al., *J of Microscopy*, **216** 1 (2004) 84-95.

[L.A. GIANNUZZI et al., p.13-53 dans 'Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice', Springer, New York (2005)]

[S. CAO et al., Journal of Microscopy, 233 (2009) 61-68]

[L. HOLZER, M. CANTONI, p. 410-435 dans 'Nanofabrication Using Focused Ion & Electron Beams - Principles and Applications', Oxford Univ. Press, New York (2012)]

[M. CANTONI, L. HOLZER. MRS Bulletin, 394 (2014) 354-360]

Microscope à faisceau d'ions focalisé **(FIB)** double-colonne ionique / électronique

Surface imagée en MEB et successivement abrasée en FIB

Tomographie en FIB-SEM

ILLUSTRATION 1 : imagerie et reconstruction du cerveau

[G. KNOTT et al., The Journal of Neuroscience, 19 28(12): (2008) 2959-2964]

[SHU X et al., PLoS Biol 94 (2011): e1001041; doi:10.1371/journal.pbio.1001041]

[KRESHUK A et al., *PLoS ONE* **6**(10): e24899 (2011) ; doi:10.1371/journal.pone.0024899]

[L. BLAZQUEZ-LLORCA et al., Journal of Alzheimer's Disease **34** (2013) 1–5] 16

ILLUSTRATION 2 : adhésion cellulaire

Fibroblastes sur verre

[R. WIERZBICKI et al., PLoS ONE **8** 1 (2013), e53307. doi:10.1371/journal.pone.005 3307]

1 µm

Tomographie en FIB-SEM

ILLUSTRATION 3 : polymères nanocomposites

matrice de polyurethane (PU) renforcé par 5 % poids de nano-filaments Fe₃C@C [V. SALLES et al., *Sensors and Actuators A*, **211** (2014), 105-114]

<u>2 µm</u>

760 tranches, épaisseur 20 nm

- Résolution accessible (voxel isotrope) : 3 nm
- volumes typiques en quelques heures à 'un week-end' : 15 x 10 x 10 μ m³
- quelques centaines à quelques milliers d'images

La problématique de l'alignement des séries d'images en FIB-SEM

Ré-alignement post-mortem de la série d'images : corrélation-croisée utilisant des marqueurs gravés sur la (les) surface(s)

[P. THÉVENAZ et al., *IEE Trans. On Image Process.* **7** 1 (1998) 27-41; [P. KOTULA et al., *Microscopy and Microanalysis*, **12** (2006) 36-48; C. HOLZAPFEL et al., *Scripta Materialia*, **56** (2007) 697-700; F. LASAGNI et al., *Adv. Engineering Mater*, 10 (2008) 62-66; B.J. INKSON et al., *Scripta Materialia*, **45** (2001) 753-758; A.V. NAGASEKHAR et al., *Materials Characterization*, **61** (2010) 1035-1042; M. SCHAFFER et al., *Ultramicroscopy*, **107** (2007) 587-597; S. CAO et al., *Journal of Microscopy*, **233** (2009) 61-68; L. HOLZER et al., *J of Microscopy*, **216** 1 (2004) 84-95; H. IWAI et al., *J. of Power Sources* **195** (2010) 955-961; M.D. UCHIC et al., *Ultramicroscopy* **109** (2009) 1229-1235; K. LEPINAY, F. LORUT, *Microscopy and* 19 *Microanalysis* 19 (2013) 85-92; H. YUAN et al., p.135-136 dans 'emc2012', vol. 2,ed. RMS: London, (2012)].

La problématique de l'alignement des séries d'images en FIB-SEM

Danger de l'alignement par corrélation croisée

tranches successives

Dangers:

- La surface n'est pas plane et va être 'aplanie' par l'alignement
- La microstructure elle-même est artificiellement alignée par la corrélation croisée

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

Evènement formulation mathématique de la base de la tomographie

par série 'tiltée' : transformée de Radon[3]

Période

1917

Sciences de la Vie

développement de la tomographie aux Rayons-X 1960's(Prix Nobel de Médecine en 1979 pour A.M. Cormack et G.N. Hounsfield[4]) première application d'une technique tomographique en microscopie électronique en Biologie 1980's(Prix Nobel de Chimie en 1982 pour A. Klug[5]) 1990premier système commercial permettant l'acquisition de données en TEM (durée environ 4 heures) utilisation routinière de la tomographie en Biologie 1990's(voir par exemple[6, 7, 8, 9]); automatisation de la tomographie en TEM[10, 11] 2000première application de la tomographie en TEM en catalyse[12] développement de la pré-calibration 2002en tomographie électronique[13] premières applications de la tomographie en Sciences des Matériaux par STEM-HAADF[15] et par techniques spectroscopiques (EDX et EFTEM)[16]; développement de 2000's systèmes commerciaux précis pour l'acquisition des données premiers essais de tomographie par abrasions 2001successives d'un volume en FIB[17, 18] stratégies d'imagerie 'confocale' en STEM 2005 corrigé de l'aberration de sphéricité[19, 20] 2008 tomographie électronique en SEM[21][T. EPICIER, "Tomographie multiplication des applications de la tomographie en Électronique", p.83-124 Sciences des Matériaux[22, 23, 24]; approches 3D à l'échelle dans 'Imagerie 3D en 2010'satomique en STEM-HAADF[25, 26] et par reconstruction Mécanique des Matériaux', HREM [27]; développements de nouveaux algorithmes de reconstruction[28, 29] et programmation Pub. traité MIM (Hermès ultra-rapide en 'GPU'[30, 31]; approches '4D'[32, 33] Science), (2014), 400 p.]

Sciences des **Matériaux**

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

- a) L'avance des biologistes sur les physiciens des matériaux...
- Principe de la tomographie de la particule unique en biologie

100 nm A vues latérales vues de dessus

Immonucomplexes en cryo-microscopie (glace vitreuse)

[N. BOISSET et al., *J. Structural Biol.,* **115** 1 (1995)]

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

- a) L'avance des biologistes sur les physiciens des matériaux...
- Principe le plus général en MET : tomographie 'tiltée'

[M. BARCENA, A.J. KOSTER, Seminars in Cell & Developmental Biology, **20** (2009) 920–930]

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

- a) L'avance des biologistes sur les physiciens des matériaux...
- Les objets biologiques sont majoritairement NON-CRISTALLINS contraste d'absorption : l'intensité est seulement liée à l'épaisseur massique

(hypothèse de projection)

Matière Biologique : faible contraste (cryo-microscopie, objets non marqués) MAIS pas d'effet de DIFFRACTION

Cellules épithéliales de rat (congélation haute pression) ; d'après W. HE, J.J. FERNANDEZ (2010)

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

a) L'avance des biologistes sur les physiciens des matériaux...

[W. BAUMEISTER et al., Trends in cell Biology, 9 (1999) 81-85]

[S. MARCO et al., *Biochemistry (Moscow)* **69**, 11 (2004) 1219-1225]

[M. BÁRCENA, A.J. KOSTER, Seminars in Cell & Developmental Biology 20 (2009) 920]

[W. HE, J.J. FERNANDEZ, ENCYCLOPEDIA OF LIFE SCIENCES (2010), John Wiley & Sons, Ltd. <u>www.els.net</u> - accès libre internet -]

[A.A. SOUSA et al., J. Struct. Biol. 174 1 (2011) 107-114]

un exemple en biologie : tomographie 'tiltée' en mode cryo-microscopie - nuclear pore complexes -(cité par W. HE, J.J. FERNANDEZ, (2010))

- 1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux
 - b) Tomographie 'tiltée' : signaux insensibles à la diffraction
 - MET Champ clair :

applicable aux échantillons amorphes (polymères, verres) ou peu cristallins, ou aux mesures morphologiques de nano-objets

Nanoparticules de Nickel sur des billes de silice

[O. ERSEN et al., *Solid State Sciences* **9** (2007) 1088-1098]

Nanocomposite polymère renforcé par des Nanotubes de carbone (incrément d'inclinaison 2°, cryo-MET 200 kV ;Y. LIU et al., INSA / Institut Curie, (2012), *non publié*)

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

- b) Tomographie 'tiltée' : signaux insensibles à la diffraction
- Mode balayage STEM, Champ Sombre Annulaire à Grand Angle HAADF applicable aux échantillons cristallins (ou non) présentant un contraste en Z entre les différentes phases...

[P.A. MIDGLEY et al., *Chem. Comm* (2001) 907-908]
[P.A. MIDGLEY, M. WEYLAND, *Ultramicroscopy* 96 (2003) 413-431]
[J.M. THOMAS et al., *Angew. Chem. Int. Ed.*, 43 (2004) 6745 -6747]

Précipitation dans un alliage d'Aluminium

Précipitation dans un acier

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

b) Tomographie 'tiltée' : signaux insensibles à la diffraction

• Imagerie filtrée en énergie EFTEM et/ou cartographie élémentaire par Spectroscopie Dispersive en Énergie des photons-X EDX : pour l'obtention d'un contraste chimique

[G. MÖBUS et al., *Ultramicroscopy* **96** (2003) 433-451]

[K. JARAUSCH et al., Ultramicroscopy, 109 4 (2009) 326-337]

[K. LEPINAY et al., Micron, 47 (2013) 43]

[A. GENC et al., Ultramicroscopy 131 (2013) 24]

Un exemple : supports de catalyseurs Al₂O₃ / SiO₂ [L. ROIBAN et al., Proceed. IMC2014] imagerie filtrée EFTEM (JEOL 2100F) cartographie EDX (FEI Osiris)

10.1007/978-1-4419-7200-2 1, Springer Science+Business Media, LLC 2011]

au-dessus

EX. d'imagerie HAADF : Nanoparticules (supportées)

Zircone ZrO₂ sur Alumine Al₂O₃

NPs Pd_xPt_{1-x} [F.C. SANTOS AIRES, IRCELYON]

a_{Pd} : 0.389 nm, a_{Pt} : 0.392 nm

Ag dans TiO₂ nano-cristallisé [N. DESTOUCHES et al., *HC*, St-Etienne]

EX. d'imagerie HAADF : phases 'légères' dans une matrice 'lourde'

TEM sousfocalisé 2 μm

Cavités de Xénon (gaz, $Z_{Xe} = 54$) dans une matrice d'UO₂ implanté 10¹⁶

[B. MARCHAND, thèse IPNL, IN2P3-Lyon, (2013)]

EX. d'imagerie HAADF : Phases 'légères' dans une matrice 'lourde'

Précipitation de nitrure de silicium (non-cristallin) dans un acier

[H.P. VAN LANDEGHEM et al., Scripta Met., 68, (2013), 187]

<u>0.2 µm</u>

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

c) Quelques compléments sur l'imagerie HAADF : avantages / limitations par rapport à l'imagerie conventionnelle

TEM 200 kV (sous-focalisation)

nanocomposite polymère + nanotubes de carbone CNTs@P(S-BuA) [Y. LIU, thèse (2013), *INSA-Lyon*]

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

c) Quelques compléments sur l'imagerie HAADF : avantages / limitations par rapport à l'imagerie conventionnelle TEM 200 kV (focalisé) HAADF

1.3. Spécificités en Sciences de la Vie et Sciences des Matériaux

c) Quelques compléments sur l'imagerie HAADF : avantages / limitations par rapport à l'imagerie conventionnelle

TEM 200 kV (sous-focalisation)

Modification du grandissement \approx 15 %, Rotation \approx 3 %

[H. ZHANG, A. TAKAOKA, *Meas. Sci. Technol.* 36 **10** (1999) N3–N6]
• Inconvénient par rapport à l'imagerie TEM

Faible profondeur de champ en mode STEM (gênant à grandissement modéré)

2.1. Principes généraux

• Quelques références... (en Sciences des Matériaux)

[KAK AC., SLANEY M., Principles of Computerized Tomographic Imaging, IEEE Press : New York, (1988) 329 p. ; <u>www.slaney.org/pct/pct-toc.html</u>

[P.A. MIDGLEY, p. 601-627 in 'Handbook of Microscopy for Nanotechnology', Springer US, (2005)]

[FRANK J., Electron Tomography : Methods for Three-Dimensional Visualization of Structures in the Cell, 2° édition, Springer: New York, (2006) 455 p.]

[P.A. MIDGLEY, M. WEYLAND, p.353-392 dans 'Scanning Transmission Electron Microscopy', éd. S.J. Pennycook, P.D. Nellist, C Springer Science+Business Media, LLC (2011)]

[T. EPICIER, "Tomographie Électronique", p.83-124 dans 'Imagerie 3D en Mécanique des Matériaux', Pub. traité MIM (Hermès Science), (2014), 400 p., ISBN : 9782746245563]

• Principe de la tomographie par série 'tiltée'

2.2. Reconstruction tomographique : principes algorithmiques

a) Quelques éléments mathématiques...

Transformée de Radon

 $R(x',y') = \int_{L} f(x, y, z) \, dl$

[J. RADON, Berichte Verhandl. Königl. Sächs. Gessellsch. Wiss. Leipzig, Math-Phys. **K1 69** (1917) 262-277]

• Théorème de la section centrale

"la section centrale de la transformée de Fourier de l'objet correspond à la transformée de Fourier de sa projection (perpendiculairement à la coupe)"

$$F(X, Y) = \int \left[\int f(x, y, z) \, dz \right] (exp (-2i\pi (Xx + Yy)) \, dxdy)$$

Espace direct

inclinaison de l'objet jusqu'à θ_{max} ____ par incrément $\delta\theta$ ____

Espace de Fourier

e_{max}- visualisation du **'volume manquant'**

> visualisation du
> sous-échantillonnage aux hautes fréquences

2.2. Reconstruction tomographique : principes algorithmiques

b) Base de la reconstruction du volume = TOMOGRAMME : la RÉTRO-PROJECTION (Back Projection)

Le **sous-échantillonnage** aux hautes fréquences dégrade la résolution potentielle ; pour compenser cet effet, on **sur-pondère** la contribution des hautes fréquences (**WBP: Weighted Back Projection**)

[P.F.C. GILBERT, Proc. R. Soc. London B 182 (1972) 89

[M. RADERMACHER, p.245-273 dans '*Electron Tomography : Methods for Three-Dimensional Visualization of Structures in the Cell*', 2° édition, Springer: New York, (2006)]

c) Les méthodes (algorithmes) de reconstruction 'standards'

- WBP: Weighted Back Projection
- ART: Algebraic Reconstruction Technique

• SIRT: Simultaneous Iterative RT

c) Les méthodes (algorithmes) de reconstruction 'standard'

- WBP: Weighted Back Projection Peu robuste vis-à-vis du bruit
- ART: Algebraic Reconstruction Technique

[R. GORDON ET AL., *J. Theor. Biol.* 29 (1970) 471-481]
[R. MARABINI et al., *J. of Struct. Biol.* 120 (1997) 363-371]

• SIRT: Simultaneous Iterative RT

[P. GILBERT, *J. of Theoret. Biol.* **36** 1 (1972) 105-117]

• SART: Simultaneous Algebraic Reconstruction Technique (fitrage addictionnel...)

[A.H. ANDERSON, A.C. KAK, Ultrason. Imaging, 6 (1984) 81-94]

[M. JIANG, G. WANG, IEEE Trans. on Image Process. 12 8 (2003) 957-961]

Méthodes itératives : convergence ≈ 5 – 20 itérations (SIRT / SART plus rapides)

NanoParticules Pd 75 x 75 x 46 nm³

[K. SATO et al., *J. Appl. Phys.* **107** (2010) 024304]

d) Quelques articles de revue sur les algorithmes 'standards'

[R. GORDON G. HERMAN, Int. Rev. Cytol. 38 (1974) 111-151]

[R.M. LEWITT Proc. IEEE, 71 (1983) 390-408]

[A.C. KAK , M. SLANEY, Principles of Computerized Tomographic Imaging, IEEE Press : New York, (1988) 329 p. ; <u>www.slaney.org/pct/pct-toc.html</u>

[J.J. FERNANDEZ, Micron, 43 (2012) 1010-1030]

e) Quelques logiciels disponibles...

- IMOD

http://bio3d.colorado.edu/imod/

[J.R. KREMER et al., J. Struct. Biol. 116 (1996) 71-76]

[D.N. MASTRONARDE, J. Struct. Biol. 120 (1997) 343-352]

- TOM http://www.biochem.mpg.de/tom/

- TOMOJ (plug-in)

http://u759.curie.fr/fr/telechargements/softwares/softwares-00734

[C. MESSAOUDI et al., *BMC Bioinformatics* 8 (2007):288] Plugin de *ImageJ* imagej.nih.gov/ij/ (*Fiji* fiji.sc/)

e) Quelques logiciels disponibles...

[N.R. VOSS et al., *Methods in Enzymology* **482** (2010) 381-392; http://en.wikibooks.org/wiki/Software_Tools_For_Molecular_Microscopy]

EM3D	em3d.tamu.edu	2.0	grantser@bio.tamu.edu	Mac Win	Free Academic	Ress et al. (1999)
IMOD	bio3d.colorado.edu/imod	4.1	mast@colorado.edu	Linux Mac Win	Free GPL	Kremer et al. (1996) Taylor (2006)
Raptor	www-vlsi.stanford.edu/TEM/ software.htm	2.1	famat@stanford.edu	Linux	Free	Amat et al. (2008)
SerialEM	bio3d.colorado.edu/SerialEM/	2.8	mast@colorado.edu	Win	Free Academic	Mastronarde (2005)
ТОМ	www.biochem.mpg.de/en/rd/ baumeister/tom_e/	-	tom@biochem.mpg.de	Linux Win	Free	Nickell et al. (2005)
TomoJ	u759.curie.u-psud.fr/ softwaresu759.html	2.1	cedric.messaoudi@curie.fr	Linux Mac Win	Free/OS CeCILL	Messaoudii et al. (2007)
TXBR	confluence.crbs.ucsd.edu/display/ ncmir/TxBR	3.0	sph@ncmir.ucsd.edu	Linux Mac Win	Free	Lawrence et al. (2006)
UCSF Tomo	msg.ucsf.edu/em/EMNEW2/ v7 tomography_page.html	7.7.4E4	agard@msg.ucsf.edu	Win	Free Academic	Zheng et al. (2007)
Xplore3D	www.fei.com/LifeSciences/	-	Robert.snyder@fei.com	Win	Commercial	Schoenmakers et al. (2005)

f) Autres logiciels (développements récents) ...

- Equally-Sloped Tomography (méthode basée sur traitement de Fourier) Gros calculateurs – grande précision [Y. MAO et al., IEEE Trans. on Image Proc. 19 5 (2010) 1259-1268]
- Compressed-Sensing (méthode basée sur contraintes numériques)

Segmentation facilitée – convergence rapide

NPs d'oxyde de er

[Z. SAGHI et al., Nano Lett. 11 (2011) 4666–73]

[B. GORIS et al., Ultramicrosc. 113 (2012) 120-130]

Comparaison récente de divers algorithmes :

[B. GORIS et al., Ultramicrosc 127 (2013) 40-47]

- Discrete Tomography (méthode basée sur contraintes géométriques : discrétisation sur 'grille' – classes de niveaux de gris) Convergence rapide – robustesse (peu de données)

[J.R. JINSCHECK et al., 0 1 Ultramicroscopy **108** (2008) 589_604]

[K.J. BATENBURG et al., Ultramicroscopy 109 (2009) 730-740]

'fantôme'

SIRT seuillé

SIRT

DART intermédiaire

DART final

2.3. Reconstruction tomographique : illustrations

a) approche de simulation de 'fantômes'

161 projections de -80° à +80° par incrément de 1°

Axe de tilt

2.3. Reconstruction tomographique : illustrations

b) Influence des paramètres numériques : nombre de projections

181 projections de -90° à +90° par incrément de 1°

121 projections de -60° à +60° par incrément de 1°

information manquante

par incrément de 1°

47

2.3. Reconstruction tomographique : illustrations c) Qualité du positionnement de l'axe de tilt

2.4. Synthèse (quelques chiffres)

• Élongation le long de Oz

 $\frac{\alpha + \sin\alpha \cos\alpha}{\alpha - \sin\alpha \cos\alpha}$

Facteur d'élongation dû au volume manquant (inclinaison maximale $\alpha < 90^\circ$)

Reconstruction $\pm 40^{\circ}$ (WBP)

Image originelle

Résolution des tomogrammes

- Amplitude d'inclinaison $2\alpha > 120^{\circ}$ (140° si possible)
- Incrément de tilt (*tilt step*) ≈ 1-2°, diminution à fort tilt : schéma de SAXTON [W.O. SAXTON, Ultramicrosc. 13 (1984) 57-70]
- Estimation de la résolution attendue [R.A. CROWTHER et al., Proc. R. Soc A 317 (1970) 319]

D = diamètre du volume reconstruit

 $R_z = 1.7 \text{ nm si } D = 50 \text{ nm}, N = 130 \text{ images } (2\alpha = 130^\circ, \text{ step } 1^\circ)$

→ Résolution voisine du nanomètre en tomographie 'tiltée'

- Fait maison (P.O. ± 85°)

[S. BENLEKBIR, F. DANOIX, T. EPICIER, H. IDRISSI, non publié, (2008)]

- commerciaux (P.O. 180°)

www.fischione.com/products/model_2050.asp

Corrélation tomo électronique / sonde atomique

Puits quantiques InGaN/GaN

[L. RIGUTTI et al., *NanoLetters* **107** (2014) 114]

[I. ARSLAN et al., Ultramicr 108 (2008) 1579]

c) Acquisition de la série d'images

 acquisition manuelle (inclinaison, rattrapage, focus, prise d'images...) ou par logiciel automatique ou semi-automatique

● selon le mode d'imagerie, le grandissement, la méthode : entre ≈ 10 minutes à quelques heures d'acquisition

d) Alignement des images

• Idéal : dépôt de NanoParticules sur l'objet permettant d'aligner les images entre elles et de déterminer la position exacte de l'axe de *tilt*

Support de catalyseur Al₂O₃ + SiO₂

(collaboration MATEIS – IFPEN, F)

Série tiltée -66° / +66°, pas 2°

Superposition 'transparente' de toutes les images montrant les traces des trajectoires des NPs, per--pendiculaires à l'axe de *tilt*

d) Alignement des images

• Idéal : dépôt de NanoParticules sur l'objet permettant d'aligner les images entre elles et de déterminer la position exacte de l'axe de *tilt*

Si le repère est bien positionné (axe de tilt correct) :

- La cordonnée projetée X_a de chaque particule suit une loi linéaire en fonction de $cos(\alpha + \alpha_0)$ - chaque α_0 peut être déterminé en optimisant la régression linéaire X_a = $f(cos(\alpha + \alpha_0))$

- La coordonnée projetée Y_{α} reste constante quel que soit α

 Autres méthodes : alignement par corrélation croisée ou algorithmes spécifiques [D. CASTAÑO-DÍEZ et al., J. of Structural Biology 170 (2010) 117–126]

2.6. Visualisation et analyse des tomogrammes

Série tiltée

TOMOGRAMME

[T. EPICIER et al., Proc. IMC2014]

- segmentation / binarisation du tomogramme
- Logiciel de visualisation / rendu 3D
- Logiciel de traitement d'images '3D' pour quantification

http://spider.wadsworth.org/

UCSF CHIMERA

an Extensible Molecular Modeling System https://www.cgl.ucsf.edu/chimera/

3. APPLICATIONS

3.1. Illustrations d'approches tomographiques (en Sciences des Matériaux) *a) Tomographie et CONTRASTE de DIFFRACTION*

• Dislocations

[TANAKA, M. et al., *Scripta Materialia* **59** (2008) 901-904]

www.sciencemag.org/content_suppl_200 6_07_20_313.5785,319,DC_11125783S1

400 nm

GaN

HATA (High Angles Triple Axis) holder: $\alpha : \pm 83^{\circ}$, $\beta : \pm 7^{\circ}$, $\gamma : \pm 5^{\circ}$

[S. HATA S et al., *Ultramicrosc.* **111** (2011) 1168-1175]

3.1. Illustrations d'approches tomographiques (en Sciences des Matériaux)

a) Tomographie et CONTRASTE de DIFFRACTION

• MINIMISER le CONTRASTE de DIFFRACTION en Champ Clair

[GEMMI M., NICOLOPOULOS S., *Ultramicrosc.* **107** (2007), 483-494}

Fautes d'empilement dans une hétérostructure InAIAs-InGaAs-InP (vue plane [001])

[REBLED J.M. et al., Ultramicrosc. 111 (2011), 1504-1511]

réduction des interactions multi-ondes (Al [001], calculs dynamiques 50 nm)

k₀

3.1. Illustrations d'approches tomographiques (en Sciences des Matériaux)

- a) Tomographie et CONTRASTE de DIFFRACTION
- APPROCHES TOMOGRAPHIQUES en MODE DIFFRACTION
- **Cristallographie électronique :** détermination de structures cristallines (structure refinement)
- Approches 'multi-2D' par Haute Résolution

Par exemple : [X. ZOU, S. HOVMÜLLER, Acta Cryst. A64 (2008), 149-160]

- Exploration tri-dimensionnelle du réseau *réciproque* (tomographie en diffraction)

Par exemple :

[T.E. GORELIK et al., J. of Microscopy, 244 Pt 3 (2011), 325-331]

[M. GEMMI et al., Acta Cryst. B68 (2012), 15-23]

- Simulations cinématique / dynamique et visualisation 3D :

emap, eslice http://www.analitex.com

[P. OLEYNIKOV, Cryst. Res. Technol. 46 6 (2011) 569-579]

[001]

Diffraction en précession

3.1. Illustrations d'approches tomographiques (en Sciences des Matériaux) b) Précipitation dans des alliages métalliques

Série 'tiltée' -52° / 69° (121°), pas 1°, 300K

*[M. DUMONT et al., Acta Materialia 53 (2005), 2881]

3.1. Illustrations d'approches tomographiques (en Sciences des Matériaux) b) Précipitation dans des alliages métalliques

c) Nanoparticules

• Formes de nanoparticules de Palladium

[S. BENLEKBIR et al., *Phil. Mag. Letters* **89** 2 (2009), 145-153]

série alignée 'croppée'

bipyramide

série 'tiltée' brute (non alignée),-43° / +67°, pas 2°

• 'bi-couche' CoPt

[T. EPICIER, F. TOURNUS, K. SATO, T. KONNO, non publié]

NanoParticules CoPt, $\emptyset \approx 2.8$ nm

couche C (espaceur)

couche C (support)

'Multicouches' : dépôt par *Low Energy Cluster Beam Deposition* d'une grande densité de NPs pour meilleur signal SQUID sans interactions magnétiques inter-particules [N. BLANC, thèse, Université-Lyon 1, (2009)]

Bi-couche NPs CoPt

FEI TITAN 300 kV (correcteur de C_s sur lentille objectif)

Tohoku University, Sendai-Japan

Reconstruction typique (WBP) [T. EPICIER, F. TOURNUS, K. SATO, T. KONNO, non publié]

(réflectivité X / RBS)

3.2. DÉVELOPPEMENTS ACTUELS

a) Résolution en tomographie MET

Approche 'classique'

- Tomographie 'simple' ou 'double' axe de rotation
- Alignement par 'corrélation' (après calibration du déplacement de l'axe de 'tilt')
- Échantillon 'standard' (lame mince, coupe ultramicrotome, nano-objets supportés,...)
- Irradiation contrôlée (...)

```
Résolution optimale attendue \approx 1 nm<sup>3</sup>
```

STEM 'confocal'

/ sonde convergente (STEM corrigé en C_s)

[K. VAN BENTHEM et al., Appl. Phys. Lett., 87 (2005), 034104]
[H.L. XIN, D.A. MULLER, J. Electron Microscopy, 58 3 (2009), 157-165]
[P. VAN DEN BROEK et al., Ultramicrosc., 110 (2010) 548-554]

• Approches 'haute résolution' (atomiques dans les cristaux)

Discrete Tomography : compter les atomes (STEM-HAADF) le long de quelques directions cristallographiques [S. VAN AERT et al., Nature **470** (2011), 374-377]

Clusters Ag dans Al

• Approches 'haute résolution' (atomiques dans les cristaux)

[M.C. SCOTT, Nature, 483, 4 (2012) 444]

- Nanoparticule d'or icosahérdique
- 68 projections, amplitude de tilt $\approx \pm 70^{\circ}$
- Reconstruction Equally Sloped Tomography sans a priori

[Y. MAO et al., Phys. Rev. B72 (2005) 052103]

Tomographie 'plasmonique'

[O. NICOLETTI, Nature, 502 (2013) 80]

- Cartographie 3D des (fréquences de) Résonances Plasmons de Surface d'une Nanoparicule d'Ag

3.2. DÉVELOPPEMENTS ACTUELS

b) Tomographie analytique en mode EDX

Quelques références...

- Premiers essais... [G. MÖBUS et al., Ultramicroscopy 96 (2003) 433-451]
- Nano-pyramides de GaN [WILDESON I.H. et al., J. Appl. Physics 108 (2010), 044303]
- http://www.fei.com/products/transmission-electron-microscopes/chemistem.aspx

• Microscopes dédiés cartographie EDX ultra-rapide (FEI, Osiris 200 kV)

Transistor FDSOI (pointe FIB 150 nm, série 'tiltée' -90° /+90°, pas 2°, 5' d'acquisition par carte, 120 kV). a) projection d'une couche ; b) tranche projetée 20 nm ; c) dispositif entier.
[K. LEPINAY et al., *Micron*, 47 (2013) 43]
[A. GENC et al., *Ultramicroscopy* 131 (2013) 24]

Résumé des conditions expérimentales : **120 kV, courant de sonde 1.2 nA,** cartes EDX 800 x 800 pixels (5'/carte), pas de *tilt 2*° (amplitude 180°), temps total 7 hr 30'

3.3. Tomographie en mode basse tension (MEB)

a) Idées générales

• Imagerie de nanotubes de carbone

low-voltage STEM : mode STEM en MEB

*épaisseur jusqu'à qqs μm

[C. PROBST et al., *Micron*, **38** (2007) 402-408]

Nanotubes de carbone (CNTs)

nanocomposite PSA-Bu @ CNTs

nanocomposite PSA-Bu @ CNTs

• Précipités Al₃ZrSc dans Al

 $I_{HAADF} \propto Z^2$ (relation plus complexe en MEB)

COQUILLE riche en Zr ($Z_{zr} = 40$) CŒUR riche en Sc ($Z_{sc} = 21$)

• Précipitation de carbures de Niobium dans un acier (répliques d'extraction)

Sciences du Vivant (WET-STEM)

'Peltier cooling

Observation de liquides en STEM-en-ESEM (MEB Environnemental)

[A. BOGNER et al., Ultramicroscopy 104 (2005), 290-301]

pour MET

Interaction NPs cellules

[W. RIMA, thèse (2013) **INSA de Lyón**]

30 kV, 5.2 Torr (échantillon P. PERRIAT, MATEIS)⁷⁴

250 nm

• Observation de liquides en STEM-en-ESEM (MEB Environnemental)

Sciences du Vivant (WET-STEM)

Diagramme ternaire de l'eau

Fibres collagènes liant l'intestin d'un rat aux cellules de graisse **10 kV, 6.1 Torr H₂O, 1°C**

Un exemple en Sciences des Matériaux : résistance à la corrosion d'outils de coupe (P. STEYER et coll., MATEIS)

76

• NANOBÂTONNETS • NANOSPHERES • NANO- BIPYRAMIDES

Essais de croissance en liquide

Densification rapide du liquide avec le temps (précipitation/cristallisation du surfactant)

b) Tomographie 'tiltée' en mode STEM en MEB

brevet FR06-09-708, (2006) [P.JORNSANOH et al., *Ultramicrosc.*

111 8 (2011), 1247-1254]

• Exemple : nanocomposite polymère + nanotubes de carbone CNTs@P(S-BuA)

[Y. LIU, thèse (2013), INSA-Lyon] Image SE Image 'STEM - DARK FIELD' **HITACHI** S-5500 Tohoku University SENDAI, Japan 30.0kV x30.0k DF(55) 30.0kV x30.0k SE 1.00um

0.5 μm

série 'tiltée' , -40° / 40° (pas 1°)

reconstruction TomoJ, ART 10 itérations (épaisseur \approx 350 nm)

3.4. SONDE ATOMIQUE TOMOGRAPHIQUE

a) Introduction

- Limitations de la tomographie électronique
 - Manque de résolution (petits objets, amas, résolution atomique)
 - Manque de sensibilité et de précision en matière d'analyse chimique (composition des phases, solutions solides,...)
- Principe de la sonde atomique

b) Performances de la Sonde Atomique

Position vraie $O(x_0, y_0)$ calculée à partir de la position de l'impact $M(x_M, y_M)$ d'après la géométrie et la cristallographie de la pointe (détermination de R, C, P,...)

Précipités MgZn₂ dans Al

Voir par exemple [B. GAULT et al., Ultramicroscopy 111 (2011) 448-457]

c) Limitations de la sonde atomique

- Lourd à mettre en œuvre
- Artefacts connus aberrations de trajectoires, effets 'loupe' locaux, ions moléculaires,...

[F. VURPILLOT et al., Appl. Phys. Lett.
76 (2000) 3127]
[B. GAULT et al., Ultramicrosc. 111 (2011) 448]

- Nécessite un échantillon CONDUCTEUR ou faiblement isolant (semi-conducteurs)

Inapplicable à la matière biologique

d) Deux exemples...

Ségrégation chimique dans des siliciures de Nickel

Carbonitrures dans un acier (alignement sur dislocation)

60 x 60 x 300 nm³

25 x 25 x 40 nm³ (F. DANOIX, GPM-Rouen)

[D. MANGELINCK et al., *Scripta Mater.* **62** 8 568 (2010)]

3.5. TOMOGRAPHIE en mode ENVIRONNEMENTAL

a) Contraintes du mode environnemental

Par définition, l'objet évolue en mode environnemental : l'approche tomographique (tridimensionnelle) n'est possible que si la réaction (l'évolution) est suffisante lente (éventuellement contrôlable) devant le temps d'acquisition des images projetées. En d'autres termes, **l'acquisition doit être rapide.**

b) Essais de tomographie en WET-STEM en MEB

Silice mésoporeuse hydrophile observée en tomographie en *ESEM* sous différentes conditions d'humidité [K. MASENELLI-VARLOT, *Microscopy & Analysis*, (2014), à paraître]

Figure 4: raw images obtained on a hydrophilic MCM-41 grain (a), (b), (c) in the dry state (H2O pressure 4.5 torr) and (d), (e), (f) after water condensation (H2O pressure 6 torr). The tilt angles were set to 50° for (a) and (d), 0° for (b) and (e) and -50° for (c) and (f). Acceleration voltage 30 kV, probe size 3; magnification 7,500; temperature 2°C; pixel size 13 nm. g: Plot profile along the line represented on (b) showing a decrease of the contrast inside the MCM41 grain.

En cours de développement : expériences environnementales en **ETEM** sous conditions oxydantes ou réductrices à haute température (T. EPICIER et al., MATEIS-CLYM) ⁸⁵

RhôneAlpes

EXAMPLE 16 The 16th European MICROSCOPY CONGRESS Convention Center - 28th August - 2nd September

UNIVERSITE DE LYON ONLY LYON

CITS

m.c.o

Merci de votre attention

Doctorants : Wael RIMA, Hui YUAN, Yang LIU, Samir BENLEKBIR, Kevin LEPINAY

Collègues : Karine MASENELLI-VARLOT, Annie MALCHÈRE, Lucian ROIBAN, Bertrand VAN DE MOORTÈLE, Agnès BOGNER, Philippe STEYER, Frédéric DANOIX, Pierre-Henri JOUNEAU, Toyohiko KONNO, Sergio MARCO, Cédric MESSAOUDI