HR-TEM study of the silicon segregation at grain boundaries in Yb:YAG ceramics for laser applications

T. EPICIER, A. MALCHÈRE, *MATEIS, INSA-Lyon - CNRS,* Villeurbanne FRANCE

L. ESPOSITO, J. HOSTASA, A. PIANCASTELLI, Research Council of Italy, ISTEC, Faenza ITALY

M. GUZIK, Faculty of Chemistry, University of Wrocław POLAND

G. BOULON, ILM, Université Lyon 1-CNRS, Villeurbanne FRANCE

- INTRODUCTION: POLYCRYSTALLINE CERAMICS for LASER APPLICATIONS
- HIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPY and NANO-ANALYTICAL RESULTS
- DISCUSSION and CONCLUSIONS

1. INTRODUCTION: POLYCRYSTALLINE CERAMICS for LASER APPLICATIONS

Relation OPTICAL PROPERTIES / SEGREGATION EFFECTS

Sintering 1735°C, 16 h, high vacuum (10⁻⁶ mbar)

4N Commercial oxides (Taimei, Nanocerox, Alfa Aesar Reacton)

Sintering aid: SiO₂ 1.4 at. %

eutectic SiO₂ - Y_2O_3 - AI_2O_3 at 1371°C

[U. KOLITSCH et al., *J. Mater. Res.*, **14** (1999) 447–55]

Internal porosity

Si segregation at GB
crystallisation of Y₂SiO₅/Y₂Si₂O₇

Si segregation (nano-SIMS) <u>http://www.cameca.com/applications/materials/ns-trace-element-yag.aspx</u>

Sintering aid: SiO₂

1.4 at. %

eutectic SiO₂ - Y_2O_3 - AI_2O_3 at 1371°C

[U. KOLITSCH et al., *J. Mater. Res.*, **14** (1999) 447–55]

D₅ [L. ESPOSITO, T. EPICIER et al., *J. Eur. Ceram. Soc.* **32** (2012) 227]

Si segregation at GB
crystallisation of Y₂SiO₅/Y₂Si₂O₇

• GB Engineering through adequate ANNEALING?

• Comparison of TWO different ANNEALING scheme; a): OPTICAL PROPERTIES

	Sample	annealing treatment	scattering coef. α_{sc} (cm ⁻¹)
10 at.%	10-Yb 1300	1 hr at 1300°C	0.88
Yb/Y	10-Yb 1100	100 hr at 1100°C	0.58
5 at.%	05-Yb 1300	1 hr at 1300°C	1.85
Yb/Y	05-Yb 1100	100 hr at 1100°C	0.55

BETTER TRANSPARENCY after ANNEALING at 1100°C

• Comparison of TWO different ANNEALING scheme; b): LASER POWER

BETTER ENERGY CONVERSION after ANNEALING at 1100°C

• EXPERIMENTAL BACKGROUND

Conventional HREM imaging Nano-probe (0.8 – 2.4 nm) EDX analysis

Thin foils (Ar Ion Beam thinning $+ O_2 - N_2$ plasma cleaning)

FEI TITAN HB 300 kV, double C_s-corrected

• SEGREGATION at Grain-Boundaries

Annealing at 1300°C: *blurred HREM* contrast at GB...

Annealing at 1100°C: *much cleaner contrast at GB...*

Note: quantitative EDX Measurement

LMS fitting: α (Yb-Y₃Al₅O₁₂) + β SiO₂ + γ Y₂O₃

	Yb	0	Y	AI	Si
EDX (at. %)	1.29%	60.55%	1 <mark>2.72</mark> %	22.95%	2.49%
0.63(Yb-YAG) + 0.34SiO ₂ + 0.03Y ₂ O ₃	1.38%	60.50%	12.71%	22.92%	2.49%

spectrum reconstruction without any Si

• Note: quantitative EDX Measurement

spectrum reconstruction *with* 2.49 at. % Si

 \Rightarrow ACCURACY \approx 0.2 at. % for each element

• SEGREGATION at Grain-Boundaries

05-Yb 1300

• SEGREGATION at Grain-Boundaries

05-Yb 1100

10-Yb 1100

• SECOND PHASE Crystallisation at GB

10 nm Õ 10-Yb 1100 0 00 0000 000 $Y_{3}AI_{5}O_{12}[10\overline{1}]$ **Y₂SiO₅**[163] Yb Υ Al Si 0 **EDX** 1.78% 62.21% 21.30% 2.27% 12.43% 62.50% 25.00% 12.50% **Y**₂**SiO**₅ Yb 0 Υ Al Si **EDX** 1.40% 63.35% 20.01% 1.74% 13.50% **Y₂Si₂O**₇ [1151] 63.64% 18.18% 18.18% Y₂Si₂O₇

• Ytterbium distribution?

05-Yb 1300

Substitution 5 % Yb: [Yb] = 0.75 at. % Substitution 10 % Yb: [Yb] = 1.5 at. %

(without Si)

10-Yb 1300

3. DISCUSSION and CONCLUSIONS

• SUMMARY of ANALYSES

			Grain ana	lysis	GB analysis	
Annealing	sample #	doping	average [Si] at. %	Nb. analysis	average [Si] at. %	Nb. analysis
1300°C,	05-Yb 1300	Yb- 5%	0.90 ± 0.35	16	4.24 ± 0.63	6
1 h.	10-Yb 1300	Yb- 10%	0.94 ± 0.20	40	5.00 ± 1.30	20
1100°C, 100 h.	05-Yb 1100	Yb- 5%	0.91 ± 0.30	70	0.97 ± 0.38	14
	10-Yb 1100	Yb- 10%	0.89 ± 0.23	35	0.96 ± 0.18	16

		Yb	0	Y	AI	Si
,	EDX	0.85%	60.12%	14.39%	23.86%	0.78%
	0.84(Yb-YAG) + 0.11SiO2 + 0.05Y2O3	0.72%	60.12%	14.39%	24.16%	0.60%

NO Yb segregation

[T. EPICIER et al., J. Mater. Chem. 22 (2012) 18221]

3. DISCUSSION and CONCLUSIONS

POSSIBLE PROCESSES involved during annealing

Non-crystalline SiO₂-based layers

SiO₂ segregation at GBs

significant Si loss from GBs and possible enrichment of $YSiO: Y_2SiO_5 \rightarrow Y_2SI_2O_7$ Cooling | down to RT [Si]_{YAG} ≈ 0.9 at. % [Si]_{GB} ≈ 0.9 at. %

NO significant SiO₂ segregation at GBs

Acknowledgements

• bilateral FRANCE-ITALIA project

Consiglio Nazionale delle Ricerche

EMC2016 Lyon · France www.emc2016.fr The 16th European **MICROSCOPY CONGRESS**

Convention Center - 28th August - 2nd September

Organised by and Under the auspices of

